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The stability of a layer of Newtonian fluid confined between two horizontal 
disks which rotate with different angular velocities is studied. Both isothermal 
and adversely stratified fluids are considered for small shear rates a t  low to  
moderate Taylor numbers. The linearized formulation of the stability problem 
is given a finite-difference representation, and the resulting algebraic eigenvalue 
problem is solved using efficient numerical techniques. The critical parameters 
and disturbance orientations are determined as a function of the Taylor number 
for the isothermal flow, and for the stratified flow for Prandtl numbers of 0.025, 
1-0 and 6-0. 

At high Taylor numbers, the unstratified fluid flows in Ekman-like layers 
near the disks, and two modes of instability are noted: the viscous-type ‘ class A ’ 
travelling wave, whose existence depends on Coriolis forces, and the inflexional 
‘class B’ mode, which is nearly stationary with respect to the nearer bounding 
disk. As the Taylor number is decreased, the Ekman layers coalesce to form 
a fully developed flow. In  this regime there is a Taylor number below which the 
class A waves are always damped. The critical Reynolds number for the class B 
waves increases rapidly as the Taylor number approaches zero. 

For Prandtl numbers of 1.0 a.nd 6-0, the adversely stratified flow exhibits two 
distinct types of instability: convective and dynamical. At low Reynolds 
numbers, a stationary mode associated with BBnard convection in a rotating 
fluid is critical. It is stabilized and given orientation by the shear. At higher 
Reynolds numbers, the critical mode is a travelling wave of the nature of either 
the class A or class B waves, depending upon the Taylor number. For a Prandtl 
number of 0.025, the critical mode resembles oscillatory convection a t  small 
Reynolds numbers and a class A wave at  larger shear rates. 

1. Introduction 
Shear, rotation, and density stratification all affect the stability of fluid flows 

with respect to small disturbances. In  this paper a configuration is considered in 
which all three of these factors are present; namely, a layer of Newtonian fluid 
confined by two horizontal rotating disks which have different temperatures 
and different rotation rates. The significant parameters which specify this flow 
are the Taylor number T, the Reynolds number R, the Rayleigh number 92 
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and the Prandtl number Pr. Linearized stability theory has previously been 
applied to several limiting cases of this configuration. The simplest case is the 
BBnard instability of a stationary fluid layer heated from below (T = 0,  R = 0, 
92 + 0). Instability of this configuration occurs a t  a well-known critical Rayleigh 
number, and results in the formation of stationary convection cells. Analytical 
and experimental investigations of this problem are summarized by Chandrasek- 
har (1961).Whenthefluidlayerheatedfrombelowrotates(T =I= 0, R = 0,B =I= 0) ,  
instability may result in either stationary or oscillatory convection, depending 
on the values of T and Pr. Investigations of this problem are also summarized 
by Chandrasekhar (1961). When the fluid is not stratified and the mean rotation 
rate is zero (T = 0, R $: 0 , g  = 0) ,  the present problem becomes equivalent t o  the 
stability analysis of plane Couette flow. This problem has been studied by several 
workers, including Hopf (1914), Wasow (1953), Zondek & Thomas (1953), 
Grohne (1954), Gallager & Mercer (1962), and Deardorff (1963). This flow appears 
to be stable at all R according to linearized theory. The case of plane Couette 
flow with adverse density stratification has been considered by Chandra (1938), 
Brunt (1951), Kuo (1963), Deardorff (1965), Gallager & Mercer (1965), Ingersoll 
(1966a, b )  and others. These experimental and analytical studies show that small 
disturbances lead to stationary convection with the same critical Rayleigh 
number as the BBnard problem. The convection occurs as vortex rolls which are 
axially aligned with the base flow. Brunt (1951) and Ingersoll (1966b), in ex- 
perimental investigations, observed some transverse rolls, but they are believed 
to have resulted from finite amplitude effects. Finally, if the fluid is unstratified 
but sheared (T + 0,  R + 0, W = 0) ,  and if T is large, Ekman layers are formed 
near the boundaries. The stability of the Ekman layer has been studied ex- 
perimentally by Faller (1963) and Tatro & Mollo-Christensen (1967) and analytic- 
ally by Lilly (1966) and Faller & Kaylor (1966). The Ekman layer exhibits two 
travelling wave instabilities. One is a viscous-type instability, which is dependent 
upon the Coriolis force, and the other, which is nearly stationary with respect to 
the rotating disk, is an inflexional instability which can be predicted on the basis 
of inviscid theory. These modes are referred t o  as class A and class B waves, 
respectively. 

In  this paper the linearized stability analysis is extended into R, W, T space 
in order to define the domain in which convective instabilities are critical and 
that in which dynamical instabilities are critical. Additional objectives are to 
determine the effect of reduced T and of stratification on the occurrence of class A 
and class B modes, and to determine the combined effect of shear and rotation 
on convective instability. 

Recent work on the stability of stratified Ekman layers also deals with the 
combined effects of shear, rotation and stratification. Faller & Kaylor (1967) 
briefly discussed a study of the stability of both stably and adversely stratified 
Ekman layers by numerical solution of the corresponding initial-value problems. 
For the case of adverse stratification, the initial configuration considered was 
one of cellular convection in a fluid layer of finite depth above a rotating disk. 
In  these numerical experiments, the vortex rolls due to instability of the Ekman 
layer were observed to compete with the convection cells for dominance; the 
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outcome depended on the values of R and 92. The study of the stably stratified 
configuration was extended and presented by KayloP & Faller (1972). It was 
found that, at large Richardson numbers, resonance can occur between the 
boundary-layer instability and internal gravity waves. This can cause an increase 
in disturbance growth rate with increasing Richardson number. At lower 
Richardson numbers, stable stratification has a damping effect. 

Etling (1971) and Brown (1972) have also studied the stability of the stratified 
Ekman layer. Etling, using a finite-difference formulation of the stability problem, 
found considerable destabilization of the Ekman layer due to adverse stratifica- 
tion. Stable stratification has a damping effect, which is particularly strong for 
the class B inflexional mode. He also found that inclusion of the vertical com- 
ponent of vorticity in the analysis renders the critical Reynolds number a function 
of the orientation of the mean flow. Brown concentrated his study on the dis- 
turbances having maximum growth rates at supercritical Reynolds numbers. 
The Coriolis force was neglected in the computations, which were thereby limited 
to the class B inflexional modes. Unstable stratification was found to shift the 
maximum growth rate disturbances towards a longitudinal orientation and to  
decrease their wavelength from that for the unstratifisd flow. 

In the study reported here, the model of the base flow is based on an analysis 
by Stewartson (1953) of the isothermal flow between rotating disks. He used 
the assumption, introduced by Von K&rm&n (1921) and Batchelor (1951), that 
theaxialvelocity is a functionof only theaxial co-ordinate. Themean temperature 
profile is taken to be linear, and the para.meter range in which this model of the 
base flow is realistic is assessed. Essentially, the study is limited to small shear 
rates and low to moderate Taylor numbers. A finite-difference representation of 
the differential system governing infinitesimal wave-like disturbances in a 
localized region of the ffow is developed. This transforms the stability analysis 
into an algebraic eigenvalue problem, which is solved numerically. Plots of the 
critical parameters, including wavenumber and orientation, as functions of the 
Taylor number are presented for the unstratified flow and for stratified flows with 
Pr = 0.025, 1.0 and 6.0. These curves are shown to approach the known results 
for the various limiting cases discussed above. 

2. Base flow 
Consider the flow of a Newtonian fluid confined between two horizontal coaxial 

disks of infinite extent. The bottom disk rotates a t  a rate Ql, and the upper disk 
at  a different rate Q2, about the z axis, which is parallel to the gravity vector 
and positive upward. The disks are each isothermal, but of different temperatures, 
TI for the bottom disk and T2 for the upper disk. When the transport properties 
are considered to be constant and viscous dissipation and work of compression 
are neglected, the Boussinesq equations, written in a rotating reference frame - 

with origin at  the midplane, are v.v = 0, 

(2.2) 
D$ 1 pQz 
-+2ZsZkx 9 = --VP+vV2V--VIkxPl28+/3g$k, Dt" P 2 
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D B / D ~  = KVB, (2.3) 

where P = YO+pgk-&pCP1kxFI. (2.4) 
A h  

Here Po is the hydrostatic pressure, 6 is the excess temperature above ambient, 
L? is the rotation rate of the fluid a t  the midplane z = 0, p is the density, v is the 
kinematic viscosity, ,8 is the volume expansivity, g is the gravitational accelera- 
tion and K is the thermal diffusivity. It is desired to obtain a representation of the 
steady sxisymmetric base flow which is valid for small differences in rotation 
rates of the disks and low to moderate mean rotation rates. 

When the variables are non-dimensionalized as 
A A A  

(2.5) 

where Uo = $( Q2 - Ql) so 3 er0 is the characteristic shear velocity, AT = Tl - T,, 
ro is the local radius, L is the separation of the disks and a carat denotes dimen- 
sional quantities, the dimensionless governing equations in cylindrical CO- 

I P, $1 = rror, LZI, [K, v,, El = UO[K v,, El, 
P = pU! P ,  B = AT8, 

ordinates become 

(2.10) 

and must be solved subject to the boundary conditions 

where the operator 2 is defined by 

(2.12) 

and where T = L?L2/v. The latter quantity is referred to in this paper as the 
Taylor number. 

For an isothermal (unstratiJied) fluid, 8 e 0, and the energy equation (2.10) 
need not be considered. Following Voii Kkm&n (1921) and Batchelor (1951), 
the class of solutions for which 

v, = V,k) (2.13) 

is considered. It then follows from (2.6)-(2.9) that 

V,/r = G(z), K/r = v"(z), (2.14) 
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where Q and 6 are functions of x only. From (2.6), 

T-9 W (  Th), 
L V ,  = -2-  @(T&z)dz+constant = -- "S YO YO 

(2.15) 

where W is as yet undetermined and T-4 is introduced for convenience. The 
momentum equations then reduce to 

(2.16) 

(s/Q) [2G6 - T-4WQ'j + 2v" = T-%" (2.17) 

and (2.18) 

By noting that the pressure must be of the form P = r2Pl+P2(z), where Pl is 
a constant, and assuming small shear, e/Q < 1, the system can be further 
simplified to give 

(2.19) 

A simple solution to this set of equations was given by Stewartson (1953), who 
defined a complex quantity 2 = Q + iv", which must satisfy 

fj" + 2TQ' = 0, Q" - 2Tc' = 0. 

ZI"-(l-i)2TZ' = 0. (2.20) 

The solution of (2.20) with the appropriate boundary conditions, and with the 
requirement of no net radial flow, is 

sinh TB( 1 - i) x 
sinh &Ti( 1 - i) * 2 =  (2.21) 

The usefulness of this solution depends on the extent of the parameter range in 
which the linearization of the equations, based on e/Q < 1, is reasonable and also 
on the physical reality of Von K&rmBn's and Batchelor's assumption, equation 
(2.13). Comparison of (2.21) with Lance & Roger's (1962) numerical solution 
of the nonlinear equations (2.16)-(2.18) for e/Q = + and various T indicates 
reasonable agreement even at Taylor numbers as high as T = 126. For T < 18.6 
the solutions of the linear and nonlinear equations are virtually identical. For 
Taylor numbers in the range 18.6 < T < 126, the general shape of the linearized 
solution(2.21) is correct; however, thereissome discrepancyinthat, asT increases, 
the nonlinear solution indicates that the fluid a t  the midplane no longer rotates 
a t  Q = &(al + a2), as in equation (2.21). The experimental investigations of 
Schultz-Grunow (1935), Stewartson (1953) and Picha & Eckert (1958) indicate 
that, if the disks are shrouded (so that the fluid which travels radially is re- 
ingested into the flow), the velocity is in agreement with solutions based on the 
assumption (2.13). The velocity given by Stewartson's (1953) solution, equation 
(2.21), was used in the study of the stability of the unstratified fluid flow reported 
here, and is considered to be essentially correct for T 5 100 if e/Q 5 1. 

In  the case of stratijfed flows, consideration must be given to the last term in 
(2.7). This term represents the excess centrifugal force, which always causes some 
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convective flow if there is a density gradient parallel to the axis of rotation. The 
parameter ,9AT(s/Q)-l, which appears in this term, is a measure of the ratio of 
the excess centrifugal acceleration due to stratification to the Coriolis accelera- 
tion. If 

kT < 1, 
4 Q 

(2.22) 

the excess centrifuga,l force can therefore be neglected, since Coriolis effects will 
have time scales significantly shorter than those for the term in question. The 
neglect of this term is further justified if the Froude number Pr = Q2r,/g, which 
is a measure of the ratio of the excess centrifugal force to the buoya.ncy force, 
is small. It is relevant to note that experimental results for BBnard instability 
in the presence of rotation are in good agreement with the theory which ignores 
this term, even though Fr > 1. The excess centrifugal force is ignored here in 
both the base-flow and stability analyses, which are considered to be subject to 
the restriction of equation (2.22). 

For the stratified base flow, the assumption of Von KBrmBn and Batchelor, 
equation (2.13), is again made since the r- and 8-momentum equations are 
only weakly and indirectly coupled to the energy equation through the pressure 
gradient. It then follows that P = +PI + P2(z) and 8 = 8(z), so the energy equa- 
tion (2.10) can be written as 

(2.23) 

where W ,  as yet undetermined, is related to V,  by (2.15). Since do/&+- I as 
(e/Q) Pr T* + 0, equa,tion (2.23) can be integrated once to yield 

Letting T-*W,(T*z) denotes W(T*z) dz, then 

(2.24) 

(2.25) 

where (e/Q)Pr is assumed to be small. Hence, for small shear, E / Q  < 1, the 
temperature gradient of the base flow can be taken as dO/dz = - 1, with an error 
of order (e/Q) Pr. The velocity of the stratified base flow is then taken to be given 
by (2.21). This representation of the base-flow velocity and temperature is 
assumed to be reasonably accurate when e/Q < 1, T 5 100, pAT(s/Q)-l< I and 
(s/Q) PrT-* < 1;  and also without these restrictions if T -+ 0 or R --f 0. 
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3. Stability analysis 
The equations governing a small wave-like disturbance are obtained by the 

usual perturbation procedure. The dimensional velocity, for example, is repre- 
sented as the sum of the base-flow and disturbance velocities: 

(3.1) 

where E' is a small quantity and all velocities are referred to a local co-ordinate 
system (x,y,x) whose origin is located at  an arbitrary radius ro. In  genera), 
the form (3.1) requires that a global description of the disturbance velocity V' 
be specified; however, on the basis of experimental observations and analyses 
of several other physical problems which are intimately related to the present 
one, it is assumed that the stability of the flow depends essentially on the local 
conditions. For example, Gregory, Stuart & Walker (1955) showed this to be 
the case in an experimental and theoretical study of the stability of the flow near 
a single rotating disk. Also, Faller (1963) and Tatro & Mollo-Christensen (1967) 
observed that instabilities of the Ekman layer occur as inward-travelling hori- 
zontal vortex rolls whose widths are of the same order as the boundary-layer 
thickness. In  the case of the BBnard problem with and without rotation, in- 
stability leads to formation of convection cells of characteristic dimensions of 
the order of the plate spacing. In  addition, the observations of Chandra (1938), 
Brunt (1951), Ingersoll (1966 b )  and others indicate that shear tends simply to 
align such motions, yielding convective rolls, rather than cells, while maintaining 
essentially the same characteristic dimension. With these facts in %ind, tlp 
instability of the flow at ro 9 L is analysed by treating the velocities V and V' 
at ro as functions only of 2. If curvature is neglected, by dropping all terms of 
order L/ro, the dimensionless disturbance equations are found to be 

V($,Q, P, $1 = +(Q, 2) + e+(&, 9,s) exp { i a ( ~  - ot")), 

(3.2) 

where D = a/&, V! = ( 0 2 -  a2) and G = (L /v )  a. The parameters in these equa- 
tions are R = Uo Llv, the local Reynolds number, T = fiL2/v, the Taylor number, 
Gr = ,8gATL3/v2, the Grashof number, and Pr = V / K ,  the Prandtl number. In  
the derivation of these equations, the non-dimensionalization 

1 V:$-iaR((a-c/R) Vg$- (D%)q5}-2TDu-iaGr$ = 0, 

V!U -iaR{(v"- c/R) U- (DC) $I+ 2TDq5 = 03 

Vf 8 - iaRPr(v" - c/R) 8 - iaPrrj = 0, 

I [4, V'] = [U,B, ( v /L )  V], 

P' = Po Uo(v/L) P ,  

[a, $'I = [ATB, AT81 

was used, and a stream function $ defined by 

w = -iarj, v = aq5/ay 

(3.3) 

(3.4) 

was introduced. Since vortex roll disturbances are anticipated, the local co- 
ordinate system has been oriented such that the x axis is aligned with the axis of 
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the vortex a t  an angle y measured counterclockwise from the azimuthal direction. 
In  this skewed co-ordinate system, the base-flow velocity components are 

ii = Qlcosy+ij1siny, 

6 = -iilsiny+Blcosy, 
(3.5) 

where 
ii, = (AsinhT*zcosT2z+ BcoshT*zs inTk~) / (A~+B~) ,  

ij, = ( - B sinh TBz cos Tgz + A  cosh Ti ,  sin !&)/(A2 + B2), 

with A = sinh BTg cos $T* and B = cosh +Tt sin &T&. The base temperature dis- 

tribution is - 
B = -*(1+22).  (3.7) 

Q = Dq5 = u = 0 = 0 a t  z = -t-i (3.8) 

The disturbance must satisfy the boundary conditions 

if the bounding disks are rigid and highly conducting. 

Numerical analysis 

The differential system (3 .2 )  and (3.8) constitutes an eigenvalue problem. For 
fixed values of the parameters R, T ,  Gr, Pr, ct and y, solutions for the eigenfunc- 
tions 4, u and B are admitted only for certain values of c, the complex eigenvalue. 
A finite-difference scheme, similar to that used by Lilly (1966) in his study of the 
stability of the Ekman layer, was used to replace the differential system by an 
dgebraic system. The z domain was divided into N intervals, and the eigenfunc- 
tions were expanded in Taylor series about the interior nodes, 4 and 13 being 
defined a t  nodal points and u being defined a t  half-nodes. Using a centred dif- 
ference scheme, 

(3.9) 

where A = 1/N,  = (q5j+B-$j+)/A, S2$j = 8(Sq5j), etc., equations (3.2), along 
with the boundary conditions (3.8), were reduced to a homogeneous set of 3N - 2 
linear algebraic equations in 3N - 2 unknowns. To minimize truncation errors, 
the remainder terms (those of O(A2)) were retained in the expansions of all terms 
except those of the highest order derivative in each equation. Base-flow quantities 
were computed a t  nodal, or half-nodal, points using (3.6) and (3.7). The resulting 
algebraic eigenvalue problem can be represented in matrix form as 

1 D$ z= 84j - 3+A2834j i- . . . , 
D2$ = 62#j - -+zA2844j + . . . , 
B44 = 84q5j - QA286$j + . . . , 

[C-l[A + i B ]  - A l l  = 0,  i'di (3.10) 

. -  
where I is the unit matrix and 

h = - ia(@ + id) (3.11) 

is an eigenvalue. The elements of the complex submatrices A, B and C are given 
in detail by Brunsvold (1972). 
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The eigenvalues of (3.10) were in general computed by converting the matrix 
to the Hessenberg, upper almost triangular, form by similarity transformations 
and then applying the LR iteration, described by Wilkinson (1965, p. 485), to 
the transformed matrix. This was accomplished using efficient Fortran-IV ver- 
sions of the programs COMBAL, COMHES and COMLR, which were originally 
given in ALGOL by Parlett & Reinsch (1969) and Martin & Wilkinson (1968 a, b ) .  

In some regions of the parameter space, the neutral disturbance is stationary 
(c' = 0) ,  so that at neutral stability h = 0. In  this case, vanishing of the de- 
terminant I A + i B  I is a necessary and sufficient condition for neutral stability, 
so neutrally stable states of this type were located by finding the zeros of this 
determinant. This is significantly more economical than computing the eigen- 
values of the matrix. To evaluate the determinant, a complex version of a routine 
described by Moler (1971), for real determinants, was written. This routine uses 
Gaussian elimination and partial pivoting in an LU decomposition which com- 
pletes the interchanges in U but only partially completes the interchanges in L. 
Unlike many Gaussian reduction programs, Moler's routine uses primarily 
column operations; this substantially reduces subscript calculations and 
repetitive addressing of widely separated locations. In  the virtual memory 
system which was used (the University of Michigan MTS), this resulted in 
significant savings of time, owing to a large reduction in the number of paging 
operations. 

All numerical results presented in this paper are believed to have converged 
to within about 0.5 yo of their limiting values as N is increased. Checks on com- 
putational accuracy were made by studying numerical convergence to known 
results for various limiting cases such as the BBnard problem (T = 0, R = 0,W + O ) ,  
the BBnard problem with rotation (T + 0, R = 0, W + 0) and plane Couette 
flow heated from below (2" --f 0, R =i= 0 , 9  + 0) ,  where 9 = Gr Pr is the Rayleigh 
number. On the basis of the various convergence studies which were made, the 
calculations presented below were made with 25 < N < 40. Details of the con- 
vergence studies are reported by Brunsvold (1972). 

Although a detailed investigation of the effect of including the remainder 
terms in the fbite-difference representation was not made over the entire range 
of parameters, sample calculations showed that it significantly increases com- 
putational efficiency. Por example, at fairly small N (15 6 N < 25),  it was found 
that inclusion of the remainder terms improved convergence of the critical 
parameters to the correct value by about 3 yo which is greater than the improve- 
ment due to a decrease of mesh size, which doubled the computational time. 

The effect of shear 
To study the effect of shear on the stability of a layer of unstratified (isothermal) 
fluid confined between rotating disks, the differential system (3.2) and (3.8) was 
simplified by setting Gr = 0 and deleting the thermal energy equation. The 
matrix form of the corresponding finite-difference representation, equation (3. lo), 
is then reduced to order 2N - 1. The locus of neutrally stable states, AT = 0, is 
a surface in T ,  R, a, y space. The objective of the numerical study was to locate 
the critical states (defined here as those neutral states having the lowest value 
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of the Reynolds number for a fixed Taylor number) in the R, T plane and to 
determine the corresponding wavenumber and orientation. 

Computations to locate the critical states were performed in conversational 
mode with the computer. A trace of the growth rate hr  as a function of a at con- 
stant Rand T was generated until the region of maximum growth rate was roughly 
located. A second growth-rate curve was then generated a t  a new value of a. 
From these two curves, both a and the minimum value of R a t  neutral stability 
could be estimated. For these values of a and R, a similar procedure was carried 
out while varying the orientation y.  This procedure was repeated iteratively 
until a, y and R were known at the critical state. When necessary, the entire 
iteration scheme was repeated with successively finer mesh sizes until convergence 
appeared to be satisfactory. 

Table 1 is a summary of the parametric study. Two distinct instabilities were 
found. Following Greenspan's (1968, p. 276) discussion of the stability of the 
Ekman layer and related rotational flows, these are denoted as class A waves 
and class B waves. The B waves, which are nearly stationary with respect to 
the rotating disks, are inflexional instabilities whose general characteristics can 
be determined by inviscid theory. This was done by Stuart in Gregory, Stuart & 
Walker (1955). The A waves were shown by Lilly (1966) to depend on a more 
complicated mechanism involving the Coriolis and shear forces. 

To facilitate comparison of the present results with the existing literature on 
rotating fluids, the behaviour of the base flow and its instability for large T must 
be considered. On referring the velocity, equation (2.21)) to that of the bottom 
disk, using Q, as the reference rotation rate, and taking the limit as T + co, the 
base velocity becomes 

B ( E )  = i,{i - e-6 cos (1 + f 2  e-E sin 6, (3.12) 

where = T * ( ~ + z )  (3.13) 

and i, and 1, are unit vectors in the azimuthal and radially inward directions, 
respectively. Equation (3.12) is recognized as the Ekman spiral. The continuity 
equation, when expressed in terms of the stretched co-ordinate 6, suggests that 
UJT* is the appropriate velocity scale; hence a new Reynolds number R, = R/Tg 
is defined. Similarly, the disturbance quantities u, = u/TB and a, = a/T' z are 
introduced. The appropriate form of the disturbance equations as T-tco can 
then be deduced (Brunsvold 1972): 

V@ - ia, RE{ (C, - c,) V: 4 - D2C, #} - ~ D u  = 0, (3.14) 

V ~ , U  - ia,R,{(C,- c,) u - Dii,$} + 2 0 4  = 0, (3.15) 

(3.16) 
q5=D2+=Du=O as z+m,  

where c, = (c/R)-siny. Equations (3.14) and (3.15) are the stability equations 
of the Ekman layer, as given by Lilly (1966). Although (3.14) and (3.15) were not 
used in this study, this discussion suggests that the stability results should be 
presented in terms of RE, a, and c, to facilitate comparison with known results for 
the instability of the Ekman layer. This has been done in table 1. 

I subject to $ = D $ = u = O  at z = O ,  
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Wave 
!P type 

100.0 A 
100.0 B 
70.0 A 
70.0 B 
50.0 A 
50-0 B 
48-46 A 
48.46 B 
35.0 B 
20.0 B 

Y 
R R, a a& (deg) C T P  

563 56.3 3.24 0.324 -20.0 0.226 
1105 110.5 5.10 0.510 10.0 0.238 

931 111.3 4-40 0.527 10.5 0.239 
533 62.5 2.75 0.329 - 16.5 0.226 

774 109.0 1-83 0.259 -9.0 0'236 
856 121-0 3-90 0.550 13.0 0.247 

851 122.0 3.85 0.552 13.0 0.248 
956 161.4 3.15 0.531 18.0 0.267 

4805 1074.0 1.15 0.258 35.0 0.359 

855 122.8 1.70 0.244 -8.0 0.238 

t Not calculated. 

TABLE 1. Critical parameters for unstratified flow 

G& 

0.568 
0.065 
0.472 
0.057 
0.394 
0-023 
NC-F 
NC 
NC 
NC 

t 
\ /' 

I I I I I 

Taylor number, T 

FIGURE 1. Critical Reynolds numbers for the class A and class B 
instabilities of the unstratified flow. 
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4000] 20’ 0 
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FIGURE 2. Critical parameters for the class A and class B instabilities of the unstratified 
flow. (a)  Critical wavenumber. (h)  Critical orientat>ion. 
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FIGURE 3. Growth rates of the class A and class B instabilities of the 
unstratified flow near t.he critical R for T = 48.64. 

Figure 1 is a plot of the critical Re as a function of T. The critical wavenumber 
and orientation are shown in figure 2. Lilly’s (1966) results for the class A and 
class B waves are indicated as dashed asymptotes in these figures. A t  T = 100 
the critical Reynolds numbers of the present study are within 3% of Lilly’s 
value for the A wave and within 4 % for the B wave. As the Taylor number is 
decreased, the Ekman layers grow in the x direction and coalesce to form a fully 
developed velocity profile. Both A and B type instabilities still occur. Below 
T = 47, however, the A wave can no longer be sustained. A thorough numerical 
search was carried out at T = 45. Vestiges of the A wave were recognized, but 
it was always damped. This is consistent with Lilly’s (1966) indication that the 
growth of class A disturbances can be supported only through the Coriolis forces, 
which are measured by T. The upper region of the critical curve for the A wave 
is shown qualitatively as a dashed line in figure i ,  because detailed calculations 
were not made in this region. It is known, from Lilly’s work for T -+ 00, that the A 
wave is not amplified a t  R, = 500, but the exact value of the upper bound is not 
known. 

Figure 3 shows the growth rates of the A and B waves a t  T = 48.64, which is 
close to the intersection of the critical curves for these two instabilities. The 
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B wave has the larger growth rate at slightly supercritical R, and therefore, 
within the limitation of linear theory, would be expected to dominate in a real 
flow. Faller (1963) and Tatro & Mollo-Christensen (1967)) however, have found 
experimenta,lly that both waves may coexist in the same Ekman-layer flow, 
although the class A waves can occur a t  smaller R,. 

As T is decreased below 47 the critical Reynolds number increases rapidly, 
and apparently without bound. As T -+ 0, the base velocity profile becomes linear 
and equations (3.2) reduce to the Orr-Sommerfeld equation if the orientation is 
y = 90". The rapid increase of critical Reynolds number is therefore compatible 
with the linear-theory studies of plane Couette flow by Gallager & Mercer (1962) 
and Deardorff (1963)) for finite R, and those of Hopf (1914)) Wasow (1953)) 
Zondek & Thomas (1953) and Grohne (1954)) for aR -+ 00, all of which suggest 
that the flow is stable at  all finite values of R. Furthermore, the trends of the 
wave speeds and orientations given here are consistent with the conclusions of 
Hopf (1914) and Grohne (1954) that, for the disturbance with minimum damping, 
cy/R -+ & 1 (and y = ~f: 90") as aR -+ co. Since the trend was clear, computations 
were not carried out for T c 20, where the critical R becomes so large that 
very fine meshes are required to achieve sufficient spatial resolution of the 
eigenfunctions. 

The eflect of stratijication 
To study the combined effects of shear and stratification on the stability of 
a layer of fluid confined between rotating disks, the entire differential system 
(3.2) and (3.8)) or its finite-difference representation (3.10)) must be considered. 
The locus of neutrally stable states is now a surface in T, R, Gr, Pr, a,  y space. 
The objective of the numerical study was to locate the critical states in the Gr, 
R plane with T and Pr as parameters. In  this discussion a critical state is that 
neutral state which has the minimum Grashof number for fixed Reynolds, 
Taylor and Prandtl numbers. 

The computational procedure used when the critical disturbance was not 
stationary is equivalent to that described in the discussion of the effect of shear, 
except that there are additional parameters in the present case. 

In  a large region of the parameter space considered, the critical disturbances 
were found to be stationary convective rolls and could therefore be located by 
finding the zeros of the determinant I A + iB] . For fhed values of all parameters 
other than Gr, the zero of the determinant was bracketed to within an interval 
of about 1 % of the value of Gr. a was then varied until Gr was roughly minimized. 
Using this value of a, Gr was then minimized with respect to y. The entire pro- 
cedure was iterated until the critical state was located. Since these critical states 
were determined under the assumption that h = 0, the results were checked at  
sample locations by computing the eigenvalues of (3.10), to ensure that the 
stationary mode was indeed the critical one. 

The results of the numerical study for Pr = 6-0 and Pr = 1.0 are presented 
in tables 2 and 3, and are represented graphically in figures 4 and 5. These curves 
of critical parameters were drawn using the numerical data in tables 2 and 3. 
Additional information regarding the trends of these curves was obtained from 
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T 
100.0 
100.0 
100.0 
100.0 

50.0 
50.0 
50.0 
50.0 

20.0 
20.0 
20.0 

R Re Gr tc Y (deg) 

100.0 10.0 2638.0 5.80 17.5 
200.0 20.0 3854.5 5.65 - 2.5 
300.0 30.0 5154.8 6.10 - 13.0 
500.0 50.0 7435.5 6.50 - 21.0 

50.0 7.07 1242.1 4.65 68.0 
200.0 28,28 3701.5 4.85 49.5 
500.0 70.70 8334.9 5.55 40.5 
730.0 103.2 5000.0 1.90 - 10.0 

50.0 11.2 683.2 3-40 - 61.5 
200.0 44.8 2982.4 4.50 - 71.0 
500.0 111.8 7283.5 5.05 - 75.0 

TABLE 2. Critical parameters for stratified flow (Pr = 6.0) 

crjR 

0 
0 
0 
0 

0 
0 
0 
0.231 

0 
0 
0 

T 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 

70.0 
70.0 
70.0 

50.0 
50.0 
50.0 
50.0 
50.0 

35.0 
35.0 
35.0 
35.0 

20.0 
20.0 
20.0 
20.0 
20.0 

R 

100.0 
200.0 
300-0 
400.0 
500.0 
559.0 

100.0 
300.0 
500.0 

50.0 
200.0 
500.0 
738.0 
756.0 

50.0 
200.0 
500.0 
947.0 

50.0 
100.0 
200.0 
300.0 
500.0 

Re 

10.0 
20.0 
30.0 
40.0 
50.0 
55.9 

11.9 
35.8 
59.7 

7.07 
28.28 
70.70 

104.3 
112.0 

33.8 
84.5 

160.0 

11.2 
22.4 
44.8 
67.1 

111.8 

8.45 

Gr 

9905.0 
12540.0 
16199.0 
19268.0 
21998.0 
15000~0 

7208.0 
14666.0 
22230.0 

4777.5 
9622.0 

25247.0 
14000.0 
7000.0 

3660.0 
9370.0 

27663.0 
5000.0 

2610.0 
3709.0 
8675.0 

15 176.0 
25415.0 

tc Y (deg) 
5.56 74.0 
5.08 67.0 
5.33 50.0 
5.56 37.0 
5.68 31-0 
3.35 - 20.0 

4-80 86.0 
4.70 66.0 
5.10 51.0 

4.55 - 82.0 
3.70 - 87.0 
5-00 69.0 
1-92 - 10.5 
1-88 - 10.0 

4.05 - 69.0 
2.90 - 69.0 
5.30 87.0 
3.13 18.0 

3.50 - 49.0 
3.30 - 48.0 
2.50 - 49.0 
5.00 - 58.0 
5.85 - 64.0 

TABLE 3. Critical parameters for stratified flow (Pr = 1.0) 

d /R  

0 
0 
0 
0 
0 
0.211 

0 
0 
0 

0 
0 
0 
0.225 
0-228 

0 
0 
0 
0.266 

0 
0 
0 
0 
0 

preliminary computations of lower accuracy. Those regions in which there is 
significant uncertainty regarding the precise structure of the curve are indicated 
by dashed lines. Discontinuities which occur upon transition from convective 
to dynamical instability as the critical mode are denoted by dot-dashed lines. 

At T = 0, the problem reduces to the classical Benard problem, so the critical 
curves are simply the straight lines Gr = 1708/Pr. For non-zero T and R = 0, 
the problem reduces to the BBnard problem with rotation, which has been studied 
extensively by Chandrasekhar (1953) and Chandrasekhar & Elbert (1955), and 
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FIGURE 4. (a) Critical Grashof numbers, ( b )  critical wavenumbers for Pr = 6.0 
and (c )  critical orientation angles (in degrees) for Pr = 6.0. 
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FIGURE 5. (a) Critical Grashof numbers, (b) critical wavenumbers and 
(c )  critical orientation angles (in degrees) for Pr = 1.0. 

summarized by Chandrasekhar (1961). Convergence of the results of the present 
study to those given in the latter reference was within 0.5 %. (It should be noted 
that Chandrasekhar’s (1961) results are given in terms of a. different Taylor 
number Ta = 47’ 2.) The linear theory is considered to be accurate in the Taylor 
number range considered here; however, at  higher T, Veronis (1959,1966), Rossby 
(1 969), Niiler & Bisshopp (1 965) and Homsey & Hudson (197 1 a,  b) have shown that 
the excess centrifugal force, formation of Ekman-like layers and nonlinear phe- 
nomena become important. For Pr = 1.0 and Pr = 6.0 the critical disturbances 
at R = 0 are in the form of stationary convection cells with no preferred orienta- 
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FIGURE 6. (a) Critical Grashof numbers, (5) critical wavenumbers (2' = 50) 
and (c) critical orientation angles (in degrees, T = 50) for Pr = 0.025. 

tion. When the shear, as measured by RE = R/TB, is increased, the critical dis- 
turbances appear as stationary convective roll vortices with specific orientations. 
As indicated in figure 5 (a) ,  shear, in the presence of rotation, has a stabilizing 
effect on these stationary disturbances. Increasing T a t  fixed RE also stabilizes 
the flow. As RE is increased further, travelling wave modes become more critical 
than the stationary modes. The points of transition from one mode to the other 
as the critical one are indicated by discontinuities in the critical parameter 
curves. The travelling waves are again denoted by A and B since they have the 
same characteristics as the class A and class B waves which occur in the un- 
stratified flow (Gr = 0). The A waves are critical when T 2 47 and the B waves 
are critical when T 5 47. Rotation, as measured by T, has a destabilizing in- 
fluence on the travelling wave modes. Shear, as measured by RE, has a similar 
destabilizing influence. Sample computations also indicate that theneutral curves 
for the travelling wave modes follow the same trend into the domain of negative 
Gr as that shown in figure 5 (a)  for Gr > 0. That is, stable stratification appears to 
have a damping influence on the dynamical modes. 

The critical curves for Pr = 0.025 (figures 6) ale somewhat different since 
all critical disturbances are non-stationary at  this Pr. The numerical results, 
computed for T = 50, were all obtained by calculating the eigenvalues of (3.10). 
They are given in table 4. As R -+ 0 the problem is reduced to that of the BBnard 
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T 

50.0 
50.0 
50.0 
50.0 
50.0 
50.0 

A .  R. Brunsvold and C. M .  Vest 
~~~~ - 

R RE Gr a Y (deg) cT/R 

50.0 7.07 173800.0 2.93 - 41.5 0.332 
175.0 24.77 186200.0 2.70 - 39.0 0.141 
240.0 34.3 197300.0 2.51 - 36.0 0.135 
300.0 42.4 204900.0 2.41 - 31.5 0.144 
500.0 70.7 144900.0 2.25 - 15.0 0.206 
600.0 84.8 92600.0 2.09 - 12.5 0.233 

TABLE 4. Critical parameters for stratified flow (Pr = 0.025) 

60 
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40 

0 
I 
0 

X 
1 30 

R3 
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10 

0 20 40 60 80 100 120 
R, = R/Tt 

FIGURE 7. Critical Rayleigh numbers at T = 50 for various Prandtl numbers. 

instability with Iotation. Chandrasekhar (1953) and Chandrasekhar & Elbert 
(1955) found for the case of f ree  boundaries that the critical disturbances are 
overstable for Pr = 0-025 if T 2 12. In the present study (see appendix), it was 
found that with rigid boundaries the critical disturbance is overstable if T 2- 45. 

The critical Gr is seen in figure 6 (a) to at  first increase as RE is increased and 
then to decrease until the critical curve crosses the RE axis at the A wave critical 
state of the unstratified flow. The critical wavenumbers and orientations are 
indicated in figures 6 ( b )  and (c). None of these critical curves appear to have 
abrupt discontinuities as in the case of Pr = 1.0 and Pr = 6.0. The imaginary 
part hi of the eigenvalue also seemed to be a rather smooth function of RE. 
Thus it appears that these curves may become continuous in the limit Pr -+ 0. 
It would be of interest to pursue this point in greater detaiI. 

The results for all three Prandtl numbers are compared at T = 50 in figure 7. 
If the Rayleigh number W = Gr Pr is considered as the critical parameter, Pr 
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is seen to have a stabilizing influence in the presence of rotation and shear. This 
is compatible with Gallager & Mercer’s (1965) and Ingersoll’s (1966a) studies 
of plane Couette flow heated from below, which indicated that Pr has a stabilizing 
influence on disturbances with transverse components. 

4. Discussion 
The stability of a layer of Newtonian fluid confined between two horizontal 

disks which rotate with different angular velocities has been studied using 
a linearized analysis. A simple base-flow model which is valid for low to moderate 
Taylor numbers and small shear rates was used. Instabilities resembling both 
the viscous-type class A mode and the inflexional-type class B mode, which 
occur in the Ekman layer, were found to exist in the developed flow considered 
here. Indeed, the critical parameters for these modes closely approach their 
Ekman-layer values a t  Taylor numbers sufficiently low to be within the domain 
of validity of this simple base flow (T = QzL2/v 5 100). For T 2 47, the class A 
mode is the more critical of the two; however, previous experimental studies of 
the Ekman layer suggest that both modes may coexist in a real flow. For T 5 47, 
the class A mode, which Lilly (1966) showed to be sustained by a complex 
mechanism involving Coriolis as well as viscous forces, is always damped. The 
class B waves continue to exist at low Taylor numbers, although the critical 
Reynolds number appears to grow indefinitely as T + 0. This is as expected since 
the configuration approaches plane Couette flow in this limit. 

If an adverse stratification is introduced, by heating the fluid layer from below, 
the critical modes at low Reynolds numbers are convective instabilities. Hence 
for low RE, the investigation can be characterized as a study of the effect of 
shear on B6nard instability in a rotating fluid. Shear was found to stabilize the 
configuration with respect to the stationary convective vortices which are 
critical for Pr = 1.0 and Pr = 6-0, and also to  affect the orientation of these 
vortices. It was found that, at  low RE, the vortices are aligned with the base- 
flow velocity vector close to the centre of the layer ( z  - 0-25), rather than with 
the azimuthal direction of the strong flow near the boundaries. Since convective 
vortices in non-rotating shear flows are known to be aligned with the base 
velocity, this suggests that the vortices may be confined to the core region of the 
flow. This supposition is supported by the increase in wavenumber as the base 
flow tends towards a boundary-layer structure with increasing T. Furthermore, 
as RE increases a t  fixed T, the orientation corresponds to the base velocity even 
further into the core region. This would appear to be consistent with the cutting 
off of convection cells by the boundary-layer shear flow at high RE, which was 
observed in Faller & Kaylor’s (1967) numerical studies of the stratified Ekman 
layer. 

As the Reynolds number is increased with fixed Pr and T, the dynamical 
modes ( A  or B )  eventually become critical. Adverse stratification has a de- 
stabilizing influence on these modes. A similar destabilization was noted by 
Etling (1971) in a study of the adversely stratified Ekman layer. He found large 
decreases in critical Reynolds numbers as a ‘stratification parameter’ was 
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FIGURE 8. Critical Rayleigh numbers for BBnard instability with 
rotation (rigid boundaries), Pr = 0.025, 

increased, For the present configuration it was found that the convective 
instability generally becomes critical before a large reduction in the critical R, 
of the dynamical modes has been realized. 

The nature of the problem for Pr = 0.025 is somewhat different because, even 
in the absence of shear, the convective instability is oscillatory, rather than 
stationary. Shear was still found to stabilize the convective mode at  small R, 
and to destabilize the dynamical mode at  larger Re. Unlike the cases of Pr = 1.0 
and 6.0, the values of the critical parameters did not seem to suffer abrupt 
changes as the critical mode switched from being convective to dynamical. This 
suggests that there may be a smooth transition in the limit Pr + 0. 

The authors wish to acknowledge the useful discussions with Professor V. S. 
Arpaci and Professor C. B. Moler, and to express their appreciation for the com- 
puter time which was donated by The University of Michigan Computer Center 
and the Department of Mechanical Engineering. 

Appendix. A note regarding BCnard instability with rotation 
Chandrasekhar (1953) and Chandrasekhar & Elbert (1955) have presented 

discussions of the stability of a horizontal rotating fluid layer heated from below. 
This work, along with other results, is summarized by Chandrasekhar (1961). 
Detailed information is presented for the case in which both bounding surfaces 
are free (no shear stress). Some computations, based on a variational principle, 
are also reported for the case of rigid boundaries. It is known (cf. Chandrasekhar 
196 1)  that, for free boundaries, neutral disturbances are oscillatory (overstable) 
if Pr < 0.67 and if T a  = 4Q2L2/v2 is sufficiently large. For mercury, Pr = 0.025, 
the system is overstable at  critical W if T a  2 608, and becomes unstable with 
respect to stationary disturbances otherwise. In  the present study, it was 
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FIGURE 9. Critical frequencies of BBnard instability with rotation (rigid boundaries), and 
comparison with the data of Rossby (1969), Pr = 0,025. a, present study; 0, experiment 
(Rossby 1969) ; a, calculation (Chandrasekhar 1961). 

desirable to know accurately at what Ta this transition occurs if the bounding 
surfaces are rigid. Critical states for oscillatory disturbances were determined 
using iterative eigenvalue computations similar to those described in this paper. 
The variation of the critical 2 with Ta is shown in figure 8, along with the 
results of Chandrasekhar (1961) for stationary disturbances. It was found that 
the critical disturbances are oscillatory if T 2 45 and stationary if T 5 45. 

The frequency, f/sl = hi/T, of the critical disturbances was also computed 
in the Taylor number range 8100 < Ta < lo6. These computations were made 
because it was pointed out by Rossby (1969) that no such detailed calculations 
were available with which his experimental data for mercury could be compared. 
This range is of particular interest because the scatter of Rossby’s data about 
an estimated frequency curve suggests poor agreement with linear theory. Such 
a result would indeed be compatible with the finite amplitude instability con- 
siderations of Veronis (1959,1966). The linear-theory results of the present study 
are shown, along with Rossby’s data, in figure 9. Although the data appear to 
fit this curve somewhat better than they fit the extrapolation of Chandrasekhar’s 
(1961) results, which was used by Rossby, the data scatter still switches from 
above the curve to below it a t  Ta - 5 x lo4. Hence Rossby’s discussion of this 
parameter region appears to remain valid in light of these calculations. 
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